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Abstract

The theoretical basis describing Love waves projiag@n a finite thickness substrate covered bipisef
thickness solid layer having a lower shear acowsgtérd is considered. A generalized dispersiontiegua

is derived for shear horizontally polarized acaustaves in this system. Two types of solutionsh®e t
dispersion equation, both satisfying stress frasmbary conditions at the free surfaces, are shovaxitst.
The first type of solution has a displacement thetays with depth into the substrate whilst thesdc
does not. Analytical approximations to the solusidior a thin solid guiding layer show that these
solutions can be considered as generalizationsowé lwaves and resonant shear horizontally polarized
acoustic plate modes (SH-APM), respectively. Nuparisolutions to the dispersion equation are
developed and the spectrum of modes for thick ggidayers is examined with particular reference to
sensor applications. As expected, increasing thekrthss of the guiding layer leads to multiple Love
wave modes. However, each of these Love wave miadiegind to possess a set of shear horizontally
polarized acoustic plate modes. As the guidingrilyekness is increased the Love wave speed dezsea
until at approximatelw/4f , wherev, is the shear acoustic speed of the layerfasnthe frequency, a sharp
transition occurs in the Love wave speed from aealose to the shear acoustic speed of the stdstya

to one close to the shear acoustic speed of tlee, ay A similar pattern is observed for the layer gdide
SH-APM'’s with an increase in the guiding layer Wmess resulting in a sharp transition in the speed
the SH-APM towards a value close to that of thet h@xer SH-APM. It is shown that the appearance of
the second Love wave mode is a result of a coniimuaf the lowest SH-APM associated with the
previous Love wave mode. A physical interpretatisndeveloped for the Love waves on the finite
substrate and for the layer guided SH-APM’s andnftbis interpretation it is suggested that layedgd

SH-APM sensors could provide significantly enhancess sensitivity.
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l. Introduction

Rayleigh surface acoustic waves (SAWSs) have lorenbevestigated for their use as sensors in
gas phase applicatiohsHowever, the Rayleigh mode involves a surfacemabr component of
displacement and in aqueous phase sensors thisscaw®mpressional, or sound wave, to be gendrated
the liquid which results in large attenuafidnFlexural plate wave (FPW) devices also have &asar
normal component of displacement, but the waveahsgeed lower than the speed of sound in the liquid
which therefore prevents compressional wave geparand so allows them to be used as aqueous phase
sensors FPW devices are relatively sophisticated to fatie and, due to their thin substrates, are
relatively fragile. For aqueous phase sensorsdfairement for simple, robust devices has led facas
on shear horizontally polarized acoustic waves twhio their idealised theory, do not suffer from
significant compressional wave generation. Thephist of these devices is the quartz crystal
microbalance (QCM) which operates at typical frawies of 5-10 MHz. The term microbalance refers to
the original Sauerbréyiew of the QCM as a sensor of the mass per us# deposited on the crystal
with a mass induced frequency shift, proportional to the product of the mass per areta deposited on
the crystal and the square of the operating freayene. Af/f= kf(AnVA), wherek is a constant. The
frequency dependence of Rayleigh-SAW devices ta#position of acoustically thin mass layers has th
same form for the frequency and mass sensitivity.liquid applications, the oscillation of the ctgk
induces a shear oscillation in the liquid whichalecwithin a frequency dependent penetration depth
=20l )Y where 77 and o are the viscosity and density of the fluid ang27f is the angular
frequency. This viscous entrainment means the Q@M senses the mass of liquid within an interfacial
layer and as a consequence the frequency shifopoptional to the viscosity-density product anidwser
power of the frequency, i.&f /f= C(ro )%, whereC is a constanf. In liquid phase operation the quartz
crystal also has a dissipation. The quartz crystal also be used in electrochemical applicafjons
biochemical applicatiofisand with polymer layefsalthough in this latter case the response ottstal

is more complicated than when operated solelyliguad™**2

In aqueous phase acoustic wave sensor applicatibasirend has been for shear horizontal
acoustic waves, to avoid compressional wave prableamd for higher frequencies, to gain higher
sensitivity. Gas phase acoustic sensors have alsghs higher sensitivity by increasing the opeatin
frequency. However, QCMs use a thickness shear mvdmtation and increasing frequency requires
thinner, and hence more fragile, crystals. An aléve approach is to use surface acoustic waves
generated by a set of interdigital transducers §J/TThick piezoelectric substrates can then be usdd a
the operating frequency is determined by the firggearcing of the IDTs which determines the wavelengt

For the same lithographic resolution, a substrate & higher speed for the wave results in a higher



operating frequency. Examples of surface acousticendevice types with a dominant shear horizontal
polarization include surface transverse wal/éSTWs), leaky SAWS, surface skimming bulk wavi&s
(SSBWSs) and Love waves® The Love wave configuration has been reportedtasng one of the
highest mass sensitiviti€sIn aqueous phase sensing, one difficulty witts¢hgevices is the need to have
an IDT on the same face of the substrate as tlhidligA combination of the practical advantages of a
QCM and the SAW is provided by a sensor using sheazontal acoustic plate modes (SH-APM’s).
These modes are also excited and detected by IDd@sda not have surface normal components of
displacement, but they can be generated and deétbégteplacing the IDTs on the opposite face of a
thinned piezoelectric substr&té" However, the mass sensitivity of SH-APM devicesdported to be

less than that of Love wave devices.

In the literature on sensors, the various typeacolstic waves are often regarded as completely
separate. However, a consideration of the propedid.ove wave and SH-APM devices as operated as
sensors suggests much in common. In principle,\& save is a shear horizontally polarized acoustic
wave that is localized to the surface of a seminitd half space and guided by a layer which habear
acoustic speed less than that of the half spaceriaét In practice, the substrate is finite. The phase
velocity of the Love wave is intermediate betwelat of the substrate and the layer and is detedriige
the layer thickness. In comparison, an acoustitepfaode occurs when a finite thickness substrate is
excited at a natural resonant frequency of thetgatgs> In practice, SH-APMs will also have a surface
coating layer when operated as mass sensors anohéisis layer is likely to possess a shear acapstied
lower than that of the substrate. In theory, bb#hltove wave and the lowest ordex0, SH-APM mode
correspond to a plane wave. In Love wave theonjtiphet modes can occur with the lowest order mode
containing a node in the displacement at infinigptth into the substrate and an antinode at the free
surface at the top of the guiding layer. In SH-ARNM&ory, both the top face and lower face of the
substrate are anti-nodes so that multiple modesrogith SH-APM modes corresponding to resonances
of the plate matching a multiple of a half-waveldngondition. In a Love wave the phase speedss le
than that of the shear acoustic speed of the sibstvhereas, in a SH-APM the phase speed is higher
than that of the shear acoustic speed of the subsfFrom a theoretical point of view, as operabedh
Love waves and SH-APMs use finite substrates, budly have finite thickness mass layers with lower
shear acoustic speeds than the substrate and $®th propagation parallel to the substrate withriase
transverse displacement. The primary differenceeapgpto be that a Love wave requires a decaying
displacement with depth into the substrate whilSHRAPM uses a resonating solution. It should tees
be possible to describe both Love waves and masted&H-APMs using a single theoretical approach;

that is the principal objective of this paper.



In this work, we develop a dispersion equationvi@aves with a surface transverse displacement
propagating in the;-direction on a finite thickness substrate withefaoriented parallel to thg-x; plane
and with one face coated a finite thickness solerlayer. By imposing stress free boundary condgiat
the lower substrate face and the upper face ofgthding layer, we show that Love waves and layer
guided acoustic plate modes are two branches ofignt of the dispersion equation. The classiftratf
the solutions as generalized Love waves and SH-ABNstified by matching the analytical solutidos
small guiding layer thickness to the known solusidor Love waves and SH-APM’s; we therefore term
the solutions generalized Love waves, althoughSHeAPM modes could equally well be termed layer
guided SH-APMs. Further, numerical calculatiohshe solutions to the dispersion equation, shoat th
each Love wave mode is accompanied by a set ofsticqulate modes. We also demonstrate that as the
guiding layer thickness increases, the phase spiettdt m=1 acoustic plate mode associated with a Love
wave mode reduces until it transforms into the mégiher order Love wave mode. Similarly, highereard
SH-APM modes transform into lower order SH-APM medasociated with the next higher Love wave
mode. The consequences of the derived phase sjmmeision curve for mass sensing applications are
discussed. In addition, although we do not solie #ystem for contact with liquids, the theory does
provide an insight into mass deposition from ligquahd a theoretical basis for a generalizationqgiaid

based sensors.

Il. Theoretical Formulation
To simplify the problem, consider waves motion misotropic and non-piezoelectric material of

densityp and with Lamé constangsand /. The displacementsy;, are then described by the equation of

motior'®,
d°u, oS,
— L= (A + )=+ pOPu, 1
Poa = ( ,U)axj KOy, (1)
where the Einstein summation convention has beed asd the strain tensd@;, is defined as,
1( du, , Ou;
Sj =t e BT (2)
2\ 0x; 0%

The boundary conditions on any solution requirescdgration of the stress tensdi, which can be

written in the form,

T = AaijSKk + 2:“3,‘ 3)
In the combined Love wave and SH-APM problem, wesider a substrate of thickness,with a density
Os and Lamé constantk and (i overlayed by a uniform mass layer of thicknessnd with a density

and Lamé constant and /. In analogy to Love wave theory, the uniform maserlayer will also be



referred to as the guiding layer. The upper surtddie substrate is taken to be in the %) plane and
located atx;=0 (Fig. 1). The solutions of the equation of motere chosen to have a propagation along
the x; axis with displacements in the direction of the sagittal plane,( x3). They must also satisfy the
boundary conditions that bothand theT;; component of the stress tensor are continuouseanterface
between the substrate and layer and thatigh®mponent of the stress tensor vanishes at thestndaces

of the substrate and layengt-w andxs= d, respectively.

In order to preserve the notational similarity witie Love wave problem, a solution for the

equation of motion is sought by using displaceméantke layery;, and the substratg,, of

= (O;LO) [A e_ iTxs + B| eJTI X3 Jel ((Ut—klxl) (4)
and

= (OlO)lCSeTSX3 + Dse—Tsxg Jej(a.t—klxl) ©

1/2

where w is the angular frequency and the wave vectdq#a/v)™“ wherev is the phase speed of the

solution. A, B, Cs andDs are constants determined by the boundary conditightraditional Love wave

solution occurs when the substrate thickness. «, the shear speed of the substrate, (/)" is

12 and the wave vectoT is real, so that the solution,

greater than the shear speed of the layer(i/0)
Us, decays with depth into the substrate. A tradald®H-APM solution occurs wheth - 0 and the wave
vectorTs is purely imaginary, so that the solutiag, may take on a standing wave (resonant) formhén t
more general case under consideration here, hathdTs may be complex rather than real. The use of the
exponentials with @ factor in Eq. (4) and without jafactor in Eq. (5) is therefore purely to enable th

similarity with the Love wave theory to be morediéanoted.

Substituting Eqg. (5) into the equation of motiorschébing the substrate, i.e. Eq. (1) with the

substrate parameters, gives the equation for tlve wactorTs,

1 1
2 2
" ‘”(?‘EJ ©
Similarly substituting Eq. (4) into the equationmbtion describing the layer, gives
1 1
T =0’ =5 —-— 7
| (Vlz sz ( )



To completely specify the problem the boundary dions are imposed and this defines the constants
B, Cs andDs in Egs. (4) and (5). The first boundary conditisncontinuity of the displacement at the

interface between the substrate and the laye=8tand this gives,
A+B|:CS+DS (8)
The remaining conditions all relate to thig component of the stress tensor, which for thisesgausing

the form of the solutions in Egs. (4) and (5) cenritten as,

T, = 5‘{%] ©
The second boundary condition, continuityTgfat the substrate-layer interface, gives,
- A +B =-j(C,~D)¢ (10)
whereé has been defined as,
g= KT (11)
M,

The remaining two boundary conditions are continaitstress at the two free surfacessad andxs;=-w,

and these give the equations,
A exp(-jT,d)~ B exp(jT,d) =0 (12)
and

C, exp(-T,w) - B, exp(T,w) = 0 (13)
Solving the boundary conditions, Eqgs (8), (10),)@2d (13), gives both a dispersion equation,

tan(l,d) = {tanh{Tw) (14)

and the solutions for the displacements,

u, = (010) Aexp(-T.w)[coshT,w) cos(, x,) + & sinh(T,w) sin(T, x,) e’ (“ ) (15)
and

u, = (01.0) Aexp(T.w) cosHT, (x, + W)]ej(““klxl) (16)

where £ is defined by Eq. (11) and is a constant. Using the dispersion equation (Ed)) the layer

displacement may be re-written as,

u, = (02,0) Aexp(T.w) coshT w)[cosT, x,) + tan(T,d) sin(T, x,)|e’ ™) (17)



[l Structure of solutions

The dispersion equation (Eq. (14)) is highly nioe#r, but can nonetheless be solved numerically
and the phase speed obtained for the various pegsibdes for given substrate and layer depths with
specific material properties (shear speeds, dessitc). However, it is useful for matching theatty to
Love wave and SH-APM theory to consider the pedtidn solutions for finite thickness substrates
covered by mass layers of small thickness. Beferéopming a perturbation expansion, it is instruetio
consider the structure of the dispersion equati@mhteow it relates to Love waves and SH-APM’s and to

multiple modes.

a) Love waves
When T is real and positive and the substrate thickivess «, the dispersion equation (Eq. (14))

reduces to the dispersion equation for the Loveewmase,

tan(fd) = ¢ (18)

WhenTs is real and positive, but is finite we have a solution with a substrate Bispment that decays
with depth and which can therefore be regarded lasva wave solution on a finite substrate. Thistéin
substrate Love wave case contains multiple Loveewawdes due to the tai) termt®. At the start of

each of these modes the conditions satisfied are,

tan(f,d) =0 (19)
and
MT.
F="235=0 (20)
M,

so that the phase speed at the start of each rmaieein from Eg. (6), usings=0, asv=v; and the start of
the multiple Love wave modes are given BQg=nz wheren=0, 1, 2, ..... As the thicknesd, of the
guiding layer increases, the phase speed decraasdimearly from a value equal to the shear spaed
the substrate towards the value of the shear apiethe layery. The existence of multiple modes means
that we can consider a perturbation expansion atheustart of each mode, rather than simply about a
zero thickness mass layer. Essentially, the peatimb theory for higher Love wave modes starts at a
finite guiding layer thickness and is a perturbatid the phase speed from the value of the substtetar

speed. A necessary part of the Love solution isttteaphase speed is equal to or less than the sipesd



of the substrate. It is this condition that guaeasf real and an exponential decay of the displacement

with depth into the substrate.

b) SH-APM's
The dispersion equation (Eq. (14)) reduces to thgedsion equation for the SH-APM case when
Ts is purely imaginary, the substrate thickness finite and the mass overlayer vanisheés Q). In this
case, it is possible to writ€=jks with ks real. The dispersion equation then requires eiff#€r or a
solution of the equation,
tank.w) =0 (21)

The possible solutions of Eq (21) are the differesbnating modes of the SH-APM and are,

k, =— m=0,1,2 3, .. (22)

VA S (23)

where the subscripih has been added to the phase speeth indicate its dependence on the mode
number. Thus, the phase speeds of the SH-APM mardesither equal to or greater than the shear speed
of the substrate. It is this condition that guaeasils imaginary and a standing wave resonance in the

substrate.

¢) Love waves and Layer Guided APM’s

In the case that a SH-APM occurs (ilk.is purely imaginary), but a finite thickness mass
overlayer exists, there will be a set of solutidgasEq (14) for every value af. Moreover, as the
overlayer thickness increases, the phase speediatesbwith each of these modes will decreasettisr
reason, then=0 SH-APM mode used in sensing, should not be deghas a SH-APM mode at all. The
slightest mass loading will lower its phase spaeebdlow that of the substrate so that the waveveato

the substrate will change from imaginary to real @nwill therefore become the first Love wave mode



Eq. (23) also shows that for any given frequen@rahis a maximum number of SH-APM modes,y,
since the phase speeg, must be finite,

_Wa
Cm,

S

Mhax (24)

In the solution of the full dispersion equation (Ety)), the guiding layer thickness and the phsseed
can be chosen to simultaneously satisfy both theelLwave condition taf{d)=0 and the SH-APM
condition tankw)=0. The thicknessd,,, and the phase speed,, at which modes satisfies these
conditions can be regarded as the start of a mbodedefinition of the start of a mode is then dstent
with the traditional view of the start of a Love weamode. The thickness at which a mode startseis th

given from Eq. (19) and Eq. (23) as,

- L _ (25)
' Y v m. )
21— 1 21—+ 1—[ Sj
Vv, A 2w
wheren=0,1,2,3, .... labels the successive Love wave magelsn=1,2 3, ... labels the acoustic plate

modes associated with each Love wave mode. Athtbkness of the guiding layer increases, the phase
speed of each plate mode associated with a patitwve wave mode decreases until at some guiding
layer thickness it attains the value of the newtdoplate mode associated with the next higherrdrdee

wave mode.

V. Perturbation Solutions

In the previous section the structure of the sohgito the dispersion equation (Eq. (14)) has been
discussed and the similarities with Love waves 8RdAPM'’s has been illustrated. In addition, theeeff
on Love waves of a finite thickness substrate andSti-APM’'s of a guiding layer has also been
highlighted. In order to convincingly demonstrateatt the theoretical formulation does encompass
traditional Love waves and SH-APM's, perturbatibedry is used in this section to obtain the lingtin
case of small mass loading whose results are knowime literature. Consider a perturbatidw, of the
guiding layer thicknesg], from d=0 for then=0 Love wave and associated SH-APM’s. The phasedspe
of the unperturbed case of no guiding layer is kmamd given by Eqg. (23) and this perturbation will
result in a decrease in the phase speed of the.riib@eperturbatiom=0 - d=Ad will cause changes in
the phase speed and the wavevectors and we cafotigewriteT, °~ T, *+A T, Ts °> Ts +A T and
& - &+A& where the superscript zero indicates the valueth@fquantities whed=0. The dispersion

equation (Eqg. (14)) can then be written,

10



(£° +Af)tanh AT, w) + Af tanh{Tw)
1+ tanh{TSw) tanh AT, w)

tan(T,°Ad) = (26)

Further approximation depends on whether the medfeglperturbed is a Love wavé£0) or one of the

associatedn>0 SH-APM'’s ( tanh{<w)=0, buté®#0).

a) Love wave case
Then=0 Love wave case satisfidg&=0 and this require$°’=0 so that, from Eq. (6)°=vs. Eq.

(26) reduces to,

tan(T,°Ad) = A& tanhAT, w) (27)

Considering the definition of (Eq. (11)) the perturbatiofé can be written in terms of the wavevectors
and their perturbations,
HAT

AE = -
U

(28)

The perturbation iff; arises from the perturbation to the phase speédsagiven from Eq. (6) as,

AT, == (29)

Eq (27) therefore becomes,

tan(T,°Ad) = H Swo ~2nv tan}‘[w—N f_ZAV] (30)
:uIVsTI Vs Vs Vs

1
V7

where

T’ =w (31)

m<|\;| =

The left-hand side of Eq (30) is similar in formttat used in acoustic load impedance models oftzjua
crystal microbalancés In QCM models, the acoustic load,, on the crystal due to a thin mass layer is
Z.=j(ulw)tan(@idi) and the periodicity in this causes shear wavernasce¥ ™' To first order in the

mass layer thickness Eq. (30) becomes,

11



- 2Av

/LISVS

Ad = Tvstan{‘\‘j—” %] (32)
H “’{VISZ _1] ) )

The result in Eg. (32) gives the perturbation ia fihase speed due to the presence of a small ayass |

acting as a wave guide on a finite thickness satestiThe traditional Love wave assumes an infipitel

thick substrate and this can be obtained by takieglimit w— o, so that the tanh() term tends to unity.

This gives,

(33)

Thus, a thin mass layer acting as a Love wave goidean infinite thickness substrate generates a
fractional shift in the phase speed proportionath® square of the product of the frequency andsmas
thickness (or frequency and mass per unit areajany practical situations the substrate phasecitglis

much larger than the layer phase speed and EqcéB3e further simplified.

b) SH-APM with m=0

In this sub-section a perturbation expansion &lusr them=0 SH-APM and a result identical to
that existing in the literature is obtained. Ithen shown that this result is in error due toghgurbation
being about a singular point which means that aupsed =0 SH-APM mode becomes a Love wave
rather than remaining as a SH-APM. The zeroth optkte mode is given by a finite thickness substrat
with Tejks and kw=0. This necessarily means it also satisfies th@eLwave condition for the
unperturbed system of°=0 and, from Eq. (6), the unperturbed phase spsed. iThe perturbation
expansion of the dispersion equation (Eq. (14)p¥ad the finite thickness substrate Love wave Gask
Egs (30)-(32) are obtained. However, in the SH-A@AMe the substrate thickness remains finite and we

expand the tanh() term on the right hand side of(&0),

_ 2 2
BV s \/V—z—ltar{ Jv_;_lﬁd} o4
vV, 2uwWw vy, v, Vv

S

12



Again, Eq (30) has been used initially, rather tigmmg directly to Eq. (33), in order to preserhe t

similarity in form to acoustic impedance model€QQEM’s. Expanding in small layer thickness gives,

2
Vo 2Ug\ Y, w

_ 2
g:_'u' [V_S_]_Jﬂ (35)
which can be re-written using= (u/,0)"? andvi= (u/0)"% In the approximation thawd v))>>>1, Eq.
(35) reduces to,

ov_-pid

36
= apm (36)

which is precisely the result given by Margnhal®®

for the sensitivity of the SH-APM mode 0 to small
mass perturbations. However, we argue that theeabalculation is in fact in error due to the pdraiion
being singular. The problem arises because thaégbeedvelocity shift is negative and this must reglthe
phase speed to a value below that of the substdatsever, in this case Eq. (6) predicts thatwill be
positive and so the assumption tAgtjks with ks real can no longer be valid. In effect, when thage
speed of than=0 SH-APM is perturbed by a mass layer of sheaedpgewer than the substrates, the

solution necessarily converts into a Love wave.

c) SH-APM with m>0

The higher order SH-APM’s associated with the Laxgve do not suffer the same difficulty as
the m=0 SH-APM. In this case, the unperturbed solutias tanh{s’w)=0 with T’=jks’ andks’ real but
with &#0. Thus, the unperturbed phase spegof them™ mode is not equal to the shear speed of the
substratess and it is possible to perturb the phase speedwithreaking the assumption tlkais real and
so retain a SH-APM mode. In the=0 SH-APM case, Eq. (26) reduces to,

tan(T,°Ad) = £° tanhAT,w) (37)
and Eq. (6) gives,
42
AT, = @AY (38)
VS Vm

Thus, the equivalent of Eq. (30) is,

13



2
w |V -
tan(l,°Ad) = KW — —1ta el av (39)
IVmTIo Vs V2 Vim
Vi, |5 1
VS
whereT,° is given by
T’ =w % —iz (40)
VI Vm

Significant differences between Eq. (30) describimaye waves and Eg. (39) describing SH-APM'’s
include the replacement of the tanh( ) on the flgdrid side by a tan( ) term, the replacement of(the
20vive)? by (-Avivy) in the argument of the tan( ) and the lack ofexfactor involving the perturbation to
the phase speed. A further difference is the paeseha (.2/v>-1)" as a prefactor to the tan() and in the
denominator of the argument of the tan( ). Thisdiats responsible for the difficulties with tine=0 SH-
APM mode because wher=0 the unperturbed phase speeg,is equal to the substrate phase spegd,
and the factor vanishes, thus giving a singulantythe argument of the tan( ) term. However, ifsthi
singularity is formally ignored and the tan( ) ispanded to first order, the factor from the arguimen
cancels with the factor in the pre-factor and apaapnt result for the perturbation to the phasedmpan
be obtained. We believe this formal perturbatiosutiefor them=0 SH-APM mode is invalid and that, in

fact, the mode becomes a Love wave with the peatiai to the phase speed described by Eq. (30).

For them>0 SH-APM modes, Eq. (39) can be written to finstey inAd as,

2
Y/
HsVm V%_l A
Ad = s _taf — v (41)
U Vr2n 1 Vr% 1 Vim
5" Va5 —
V|2 m VSZ
and expanding to first order iAv gives,
Av - 2 \A
Av_ A(v_n; _ 1J_d “2)
Vi Hs (M w

14



which is a factor of two greater than Eq. (35). &8) can be used to evaluate the mode spgédm the
substrate speed and thickness and the operatiggeiney. In the case that the unperturbed SH-APM
modes are close in phase speed to the substrage phaed, i.e;=V;, and the substrate speed is much

greater than the layer phase speedyiz>v%, Eq. (41) can be reduced to,

AV - _p|Ad

Ve PW

which is the result quoted by Martat al?®>. However, it should be noted that the assumptices to

(43)

reduce Eq. (42) to Eq. (43) are very restrictivé aray not apply in practice.

The perturbation results for the dependence orsrand frequency of the phase sensitivity of a
bare substrate supporting shear waves to small lnagisg depends on whether the substrate is aukerat
as a Love wave device or a SH-APM device. Eq. @3] Eq. (42) show that in the former case the
dependence &v/viO(ad)? whilst in the latter case it Bv/v,OaAd. In this section, perturbations about
d=0 have been considered and the results are tiherefdy valid for then=0 Love wave mode and
associated APM modes. However, it is also posdiblperform perturbations about the guiding layer
thicknessesd,n, where the higher Love wave modes or their assati&H-APM’s start; in effect the

perturbations are about the mode spegds

V. Numerical Solutions and Discussion

To solve the dispersion equation (Eq. (14)) nuoadit the material parametergy(vs, A, i) and
the operating parametens,(d, f) need to be specified. In general, for any givenaf parameters there
may be multiple solutions to the dispersion equmtorresponding to multiple Love wave modes and
multiple SH-APM’s, so that the numerical approadeds to be relatively sophisticated. Defining the
dimensionless layer thickness using the operatieguiencyz=d/A, whereA, = w/f, and the dimensionless

combinations of the material parameterss /i, A=[1-(vilve)*]¥’z and w,=w/d, Eq. (14) can be re-

2 2
tanx =y, (5)1/1_%} tanh Aw, ,[1- (%] (44)

In this equationx=T\d is the variable which must be determined by thmenical routine. The mode

written as,

phase speed, can then be found fromand the dimensionless form of Eq. (7),

15



e —— 45
v — (45)
()
2z
Once the mode speed has been determined, it carsdzkto compute the displacements in both the

substrate and the layer. The solution of Eq. (48)lme considered for the two case®@f<1 and ¥/3)>>1,

which correspond to Love waves and SH-APM'’s, respely. In both cases, the solution fors real.

In the Love wave casex/f3)’<1 and the right-hand side of Eq. (44) is a monalhi reducing
function ofx which is infinite atx=0 and equal to zero &t The left-hand side of Eq. (43) is a periodic
function with infinities afpv/2 wherep=1, 3, 5, ... Hence, the number of solutions (Loveravenodes) is
determined by and is 1+IntfF1] where Int gives the integer part. In the Love waase, increasing;
reduces the value afin the solution, so that for the same phase sfeed(45)) z will be smaller. In the
infinite thickness substrate case, the only depecelef the phase speed @is in the combinatior=d/A,
and this means that changing the guiding layerkti@ss is equivalent to changimy. Since the
wavelength is set by the operating frequericyhis means that for Love waves on an infinitekhess
substrate a change in guiding layer thickness usvatent to a change in inverse frequency. Foffithite
thickness substrate case, this is no longer troause the length scale set by the operating freguesm
be compared againstas well agl. In the SH-APM casex{)*>1 and the tanh( ) on the RHS of Eq. (44)

becomes a tan( ) term, thus giving,
B x ) x )
tanx=-u. | — ||| = | —1lta Ll—= -1 46
#[xj [ﬁj A (ﬁj o

A further limitation, which is imposed by Eq. (4%3,thatx<2rmz. When the substrate thickness is infinite

(w; - ), no solutions exist to Eq. (45) satisfyixgg.

In the computation of the dispersion curve, Eq.) (#4solved by using fixed values of the
substrate thickness, the material parametergs(Vvs, 0, vi) and the operating frequency and starting with
d=0. For the system without a guiding layer, thegghgpeeds for each mode, Love wave and SH-APM,
are known from Eg. (23). The guiding layer thiclksek is then increased incrementally and at each step
Eq. (44) is solved iteratively for each mode usihg previous solutions as the initial starting gess

solutions to Eq. (44) include solutions to Eq. (464 so it is only necessary to solve Eq. (44)ufad?

16



shows a calculation using an operating frequency06f MHz with a polymer on quartz system described
by material parameteps=2655 kg n¥, vs=5100 m &, =1000 kg ¥ andv=1100 m &, and a substrate
thickness of 10Qum. The operating frequency and the material parensdave been chosen because the
system of PMMA on quartz using a surface skimmiuatk bvave (SSBW) has been widely reported in the
literature on Love wave biosenstfrsHowever, the substrate thickness is thinner thantypically used

in Love wave biosensors and has been chosen toasigghthe SH-APM modes; the separation between
SH-APM modes depends upow. The number of modes possible whelx0 is given by
Mmac=INt[wadTivg)=3. The initial speed of the Love waves and theoamted SH-APM’'s and the
thicknesses at which each of these modes begineas ¢n table | for the first three Love waveas=0, 1,

2). These data points are shown in Fig. 2 as swides. The calculated phase speeds initially ek
slowly as the guiding layer thickness increasemfrmero, but in this system a sharp transition ieesp

occurs at approximatelyrif/4.

The existence of multiple modes and the possiblange from real to imaginary of some
functions as the mode speed converts from alkigteebelowv;, means that particular care is needed when
evaluating the displacements (Egs. (15) and (16(18)) associated with a particular solution of the
dispersion equation (Eqg. (14)). In order to grolg terms in the displacements into factors thatlires
real functions multiplying travelling waves in theg direction and either exponential decays or

exponentials with phase factors, the displacenmemetse-written as

u, = (OL0) Af, (x,) exp(T,w)e! @k (47)
and

u, = (O10) Af, (x,) exp(T,wye!(“*x) (48)

where the functionf (x3) andfs (xs) are defined as,

f, = cosh{,w)[cos{, x,) + tan(T,d) sin(T, x,)] (49)
and

fo= cosr{TS(x3 + W)] (50)

In the case of Love waves;is real and positive, so that the displacemenhendubstrate and layer are
given by thefs (x3) andf, (x3) functions eachmultiplied by the exp{fw) function. In the case of SH-
APM’s, which haveTsimaginary, the displacement in the substrate apedrlare given by the functions
fs(xs) andfi(xs) alone. These two functions remain real, wherea®xpé-T.w) factor becomes expksw)

with ksis real and so adds an overall phase factor idrtvelling wave part of displacement.
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Figure 3 shows the evolution of normalized dispfaents for the first Love wave<0 with m=0)
as the guiding layer increases in thickness; teroof increasing guiding layer thickness is gibgrthe
sequence of solid curve, long dashes and shoreda3ine layer displacemeifit(xs)exp(-Tw) is shown
for x>0 and the substrate displaceménfi)exp(-Tw), is shown forxs<0 although only a small range of
substrate depth is plotted; the displacements baea normalized so that they are unity at the fige)
surface of the guiding layer. The guiding layerckiniesses are given lf4,=0.009726, 0.168272 and
0.363739 and correspond to phase speeds of 5090,a@ 1500 ni§ respectively; other parameters are
the same as in Fig. 2. The guiding layer thicknedsave been chosen so that the evolution of the
displacement for the first Love wave mode can Wlevieed through the sharp transition in the phassedp
shown in Fig. 2. Each of the displacements hasrginale at the top surface of the guiding layer and
satisfy vanishing shear stress at the lower suréddbe substrate; for an infinite thickness sudistithis
zero stress condition also implies a vanishing ldgment. Initially, with a thin guiding layer, the
substrate shows a displacement which has a shdboay with depth and which is a good approximation
to a constant in both the substrate and guidingrlafs the guiding layer thickness increases, atgua
wavelength type pattern in the layer becomes moraiant and the substrate displacement becomes
relatively smaller and more like an exponentialajethan a plane wave. Further increases in guiding
layer thickness do not alter the basic quarter-vemggh pattern as the Love wave is already essintia
localised in the layer. Physically, this is what weuld expect. When the phase speed is close tmtha
the substrate, the Love wave has dominantly thpeptis of the shear wave in the substrate, eptare
wave withvlys,. However, when the phase speed is close to fitaeqyuiding layer, the Love wave has
dominantly the properties of the shear wave inldlger, e.g. localised in the layer wikhlv, and having a
node at the interface with the substrate so thestisfies a quarter wavelength standing wave ¢iomdof
A4=d with ACA,.

Figures 4 and 5 show the evolution of the secombitlaind Love wave modes€1, m=0 andn=2, m=0) as

the guiding layer thickness increases. The formdhe figures is similar to Fig. 3 with increasitayer
thickness in the sequence of solid curve, shorhelasnd long dashes. The second Love wave mode,
shown in Fig. 4, begins its existence as a halfelength pattern in the guiding layer. As the guidiayer
thickness increases it evolves steadily intoAé3d pattern in the guiding layer, witACA,. Further
increases in guiding layer thickness do not appl#gialter this pattern although the approximatien,
becomes increasingly accurate. The evolution othiird Love wave mode, shown in Fig. 5, is simiiar

the previous cases. The pattern initially descridbédl wavelength in the substrate, but as thedmrops

and approaches the layer shear speed, the pattelves into a 3/4=d pattern in the guiding layer, with
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AQA. Thus, the Love wave modes, labelledrhyeach involve an initial pattern af//2=d in the guiding
layer which then evolves into an®21)4A/4=d with A0A,. This change in pattern matches the change in the
Love wave mode speed frowmvs to v, . These changes correspond to a change in Love wlaaracter

from that of a shear wave in the substrate to batis similar to a shear wave in the guiding layer

Figures 3-5 show how Love waves on a finite thidesubstrate evolve in character as a solid
guiding layer increases in thickness. Figure 6 shdhe equivalent evolution for the SH-APM
displacementsf; (x3) andfs (xs)., for the modesn=1, 2 and 3 associated with the0 Love wave. The
displacements have been normalized to give unithatiop (free) surface of the guiding layer anel th
exp(-Tw) functions are now phase factors and so combimd ihe travelling wave part of the
displacements. In Fig. 6, each row correspondsn® $H-APM mode and the first diagram in the row
shows the displacements as a function of relatdpgtdinto the substratey/w. The second diagram in the
row shows the displacement as a function of thative depth into the guiding layexs/d and only a
portion of the substrate is indicated so that tfepldcement in the guiding layer is emphasised. The
evolution of the pattern for the first SH-APM®1, n=0 shown by Fig. 6 (a) and Fig. 6 (d)) takes a half
wavelength in the substrate to a constant (planeevan the substrate. At the same time, the layer
displacement evolves from a constant to a half veangh type pattern. The guiding layer thicknesses
given byd/A4=0.001632, 0.218477 and 0.491484 and correspoptase speeds of 5274, 5170 and 5102
ms?, respectively; other parameters are the same Biir2. The evolution of the next higher order SH-
APM (m=2, n=0 shown by Fig. 6 (b) and Fig. 6 (e)) with inciegsguiding layer thickness takes the
substrate pattern from a wavelength to a half wength and the layer pattern from a constant tolla ha
wavelength type. The guiding layer thicknessesgaren byd/A4=0.003213, 0.242625 and 0.508397 and
correspond to phase speeds of 5928, 5600 and 58¥5Fespectively; other parameters are the same as in
Fig. 2. The evolution of the subsequent higher o&-APM (=3, n=0 shown by Fig. 6 (c) and Fig. 6
(f)) with increasing guiding layer thickness talktles substrate pattern from a one and half waveetagh
wavelength and the layer pattern from a constait half wavelength. The guiding layer thicknesses a
given byd/A4=0.0011375, 0.240673 and 0.505806 and correspoplase speeds of 7918, 7000 and 5930
ms?, respectively; other parameters are the same Rig)ir2. Thus, it is possible to visualise the etioh
of any SH-APM associated with tme0 Love wave with increasing guiding layer thickeeshem™ SH-
APM associated with the=0 Love wave starts with amA/2 type pattern in the substrate and a constant
(plane wave) in the guiding layer. As the substthtekness increases the pattern evolves untilnan (
1)A/2 type pattern is established in the substrateaahdlf wavelength type pattern is established & th

substrate.
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The physical interpretation arising from Fig. 6 denextended to understand how any particular
SH-APM mode associated with any particular Love evavode evolves with increasing guiding layer
thickness. The SH-APM mode, labelled hyand m, will initially have anmA/2 type pattern in the
substrate and and/2 type pattern in the guiding layer. As the sulistthickness increases the patterns
will evolve into an n-1)A/2 type pattern in the substrate and miljA/2 type pattern in the guiding layer.
This new pattern in the substrate and the layen floems the starting point for the SH-APM mode
associated with the next higher ordet]) mode Love wave. Once the SH-APM mode evolvés &
plane wave pattern in the substrate it forms trsestfar the “pure” Love wave mode with=0. This latter
interpretation can be seen from comparing the &ifd) with Fig. 4. From comparison of Figs. 3-5 and
Fig. 6, it is also possible to understand the slchgnges in phase speeds that occur as the guéjieg
thickness increases as a mode transition. Theiticansf them™ SH-APM to the 1) SH-APM occurs
from exactly the same guiding effect of the laygtfze transition of the Love wave mode that leadsst
phase speed changing fromvs to v=v;. The spectrum of initial phase speeds should parded as the
sequencey, Vs, Vi, Vo, ..... , Vmax With increasing guiding layer thickness causingaasition between the
successive phase speeds. This set of changes ph#se speeds can be seen clearly in Fig. 2, which
shows that lowest order SH-APM mode eventually w®linto a higher order Love wave. In addition,
each higher order SH-APM mode associated with anelwave mode, evolves into the next lower order

SH-APM mode associated with the next higher orderelwave mode.

The interpretation of SH-APM modes and their relaship to Love waves developed in this work
may have significant consequences for the use eABM’s as sensors. The phase sensitivity of Love
wave devices to deposited mass is high precisalguse of the sharp change in the phase speedatiat c
occur in the dispersion curve. A Love wave sensarot operated with a thin guiding mass layer sbeh
any additional mass being sensed can be regardedpasturbation about=v; (i.e. essentiallyd=0).
Instead, the guiding layer thickness is selectdoktat the steepest point on the phase speed-guadiar
thickness curve (i.e. at approximatelyd,/4). Any additional deposited mass then cause lelngnges in
phase speed. In contrast, SH-APM sensors are digneperated without any guiding layer and mass
being sensed is then a perturbation about thalimtode speed=vy, (i.e.d=0). The belief that Love wave
devices are more sensitive sensors than SH-APBItheirefore based on a comparison of perturbatibns
the SH-APM about thei=0 point of the dispersion curve and the Love wakeut adz0 point of the
dispersion curve. A more valid comparison of sévigit would be to use an SH-APM device that
possessed a guiding layer of thickness producirg ntaximum slope in the dispersion curve (i.e.
approximately dA/4). In this case, we would expect the sensitivity the SH-APM to increase

significantly. Moreover, the Love wave sensitivégises from a transition in the phase speed frota v,
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whereas with the layer guided SH-APM the transitioihbe between two mode speegsandv,.;. Since

the SH-APM mode speeds are determined by substrateness,w, it should be possible to make the
difference between the two highest modes greatan the difference between the substrate and layer
speeds. Thus, with appropriately chosen paramefegsmass sensitivity of the layer guided SH-APM

may even exceed that of the Love wave devicewikisvill describe fully in a future report.

VI. Conclusion

The propagation of shear horizontally polarizedustic waves in a system of a finite substrate caéy

a finite mass guiding layer of lower shear acouspieed has been considered. A dispersion equaitn a
the solutions for the substrate and layer displ&rdsnhave been constructed. The structure of the
equations has been examined and multiple solufiwedicted. These solutions have been shown to be
analogous to Love waves whemvs and to SH-APM’s whenv>v,. This formulation includes the
generalisation of Love waves to Love waves ondimtibstrates and the generalisation of SH-APM’s to
layer guided SH-APM'’s; together we refer to theseles as generalised Love waves. Perturbation theory
has been used to derive the fractional shift irsplepeed produced by small mass (thin guidingysaye

has been argued that the perturbredd SH-APM, referred to in the literature, does exist, but is in fact

a perturbed Love wave. Numerical solutions to tiepetsion equation have been constructed and the
displacements in the substrate and guiding layaméxed. These show that the higher order Love wave
modes evolve out of the lower order SH-APM'’s anel 8H-APM’s associated with one Love wave arise
from the SH-APM's from the next lower order Love wea It has been suggested from the new
interpretation of SH-APM’s and the development ahaory for layer guided SH-APM’s, that sensors

with significantly higher mass sensitivity will p@ssible.
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Table |

Phase speed, and normalised layer thicknesk,, at which Love waves and SH-APM'’s begin for first
three Love wave modes; parameters @are655 kg nt, ve=5100 m&, p=1000 kg ¥, v=1100 m &,
w=100pm andf=100 MHz.

v/ ms! dord A A A Cond A

5100.00 0.0 0.512052 1.02410
5274.36 0.0 0.511242 1.02248
5929.03 0.0 0.508834 1.01767
7918.88 0.0 0.504895 1.00979
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Figures

Figure 1. Definition of axes and propagation direction ftwear horizontally polarized waves in a
system of a finite substrate covered by a finitessnguiding layer; the displacement is in
thex, direction.
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Figure 2 Theoretical calculated phase speeds (solid curaesy function of normalised guiding
layer thickness d{A= df/v;) showing multiple modes of Love waveg<ys) and the

associated acoustic plate modesvf). The solid circle symbols indicate the analytical
result for the start of each mode.

8000
> 7000 ”\ “\ ”l
S 6000 . -
i B,
(%5000
v 4000
@ 3000
=
@ 2000
1000 =
0O 02 04 06 08 1 12 14

a/a

24



Figure 3

Figure 4

Evolution of the displacements of the guiding lagad substrate for the first Love wave

(n=0 andm=0) as the layer thickness increases (solid, laghdshort dash); the surface

normal co-ordinatexs, has been normalised by the layer thickness. Lapdrsubstrate
parameters are the same as in Fig. 2.
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Evolution of the displacements of the guiding lagad substrate for the second Love
wave f=1 andm=0) as the layer thickness increases (solid, lomghdshort dash); the

surface normal co-ordinate;, has been normalised by the layer thickness. Layer

substrate parameters are the same as in Fig. 2.
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Figure 5 Evolution of the displacements of the guiding laged substrate for the third Love wave
(n=2 andm=0) as the layer thickness increases (solid, lceghdshort dash); the surface
normal co-ordinatexs, has been normalised by the layer thickness. Lapdrsubstrate
parameters are the same as in Fig. 2.
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Figure 6.
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Evolution of the displacements of the substrate gumiding layer for the first three layer

guided SH-APM’s associated with the first Love wa the layer thickness increases

(solid, long dash, short dash). Diagrams (a) tesf@w the displacement as a function of

the surface normal co-ordinate, normalised by the substrate thicknessfor modes

m=1, 2 and 3 respectively each witk0. Diagrams (d) to (f) correspond to the same

displacements, but as a function of the surfacenabro-ordinatexs, normalised by the

guiding layer thicknessl.
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